wradlib.ipol.OrdinaryKriging.__call__#
- OrdinaryKriging.__call__(vals)[source]#
Evaluate interpolator for values given at the source points.
You can interpolate multiple datasets of source values (
vals
) at once: thevals
array should have the shape (number of source points, number of source datasets). If you want to interpolate only one set of source values,vals
can have the shape (number of source points, 1) or just (number of source points,) - which is a flat/1-D array. The output will have the same number of dimensions asvals
, i.e. it will be a flat 1-D array in casevals
is a 1-D array.- Parameters
vals (
numpy.ndarray
) – ndarray of float, shape (numsourcepoints, numfields) Values at the source points from which to interpolate Several fields may be calculated at once by passing them along the second dimension. Only this second dimension is implemented. You’ll have to reshape a more complex array for the function to work.- Returns
output (
numpy.ndarray
) – ndarray of float with shape (numtargetpoints, numfields)