Hydrometeorclassification#
[1]:
import wradlib as wrl
import xarray as xr
import os
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
try:
get_ipython().run_line_magic("matplotlib inline")
except:
plt.ion()
from scipy import interpolate
import datetime as dt
import glob
The hydrometeorclassification code is based on the paper by Zrnic et.al 2001 utilizing 2D trapezoidal membership functions based on the paper by Straka et. al 2000 adapted by Evaristo et. al 2013 for X-Band.
Precipitation Types#
[2]:
pr_types = wrl.classify.pr_types
for k, v in pr_types.items():
print(str(k) + " - ".join(v))
0LR - Light Rain
1MR - Moderate Rain
2HR - Heavy Rain
3LD - Large Drops
4HL - Hail
5RH - Rain/Hail
6GH - Graupel/Hail
7DS - Dry Snow
8WS - Wet Snow
9HC - H Crystals
10VC - V Crystals
11NP - No Precip
Membership Functions#
Load 2D Membership Functions#
[3]:
filename = wrl.util.get_wradlib_data_file("misc/msf_xband_v1.nc")
msf = xr.open_dataset(filename)
display(msf)
Downloading file 'misc/msf_xband_v1.nc' from 'https://github.com/wradlib/wradlib-data/raw/pooch/data/misc/msf_xband_v1.nc' to '/home/runner/work/wradlib/wradlib/wradlib-data'.
<xarray.Dataset> Dimensions: (idp: 55, hmc: 11, trapezoid: 4) Coordinates: * idp (idp) float64 -10.0 -8.0 -6.0 -4.0 -2.0 ... 92.0 94.0 96.0 98.0 * hmc (hmc) object 'LR' 'MR' 'HR' 'LD' 'HL' 'RH' 'GH' 'DS' 'WS' 'HC' 'VC' Dimensions without coordinates: trapezoid Data variables: ZH (hmc, idp, trapezoid) float64 ... ZDR (hmc, idp, trapezoid) float64 ... RHO (hmc, idp, trapezoid) float64 ... KDP (hmc, idp, trapezoid) float64 ... TEMP (hmc, idp, trapezoid) float64 ... Attributes: version: 1 title: 2D Membershipfunctions Hydrometeorclassification for XBand institution: Institute of Geosciences, Meteorology Section, University o... history: created by Raquel Evaristo, adapted to netCDF by Kai Mühlbauer comment: created with wradlib
Plot 2D Membership Functions#
[4]:
minmax = [(-10, 100), (-1, 6), (0.0, 1.0), (-5, 35), (-65, 45)]
for i, pr in enumerate(pr_types.values()):
if pr[0] == "NP":
continue
fig = plt.figure(figsize=(10, 8))
t = fig.suptitle(" - ".join(pr))
t.set_y(1.02)
hmc = msf.sel(hmc=pr[0])
for k, p in enumerate(hmc.data_vars.values()):
p = p.where(p != 0)
ax = fig.add_subplot(3, 2, k + 1)
p.sel(trapezoid=0).plot(x="idp", c="k", lw=1.0, ax=ax)
p.sel(trapezoid=1).plot(x="idp", c="k", lw=2.0, ax=ax)
p.sel(trapezoid=2).plot(x="idp", c="k", lw=2.0, ax=ax)
p.sel(trapezoid=3).plot(x="idp", c="k", lw=1.0, ax=ax)
ax.set_xlim((hmc.idp.min(), hmc.idp.max()))
ax.margins(x=0.05, y=0.05)
t = ax.set_title(f"{p.long_name}")
ax.set_ylim(minmax[k])
fig.tight_layout()
plt.show()











Use Sounding Data#
Retrieve Sounding Data#
To get the temperature as additional discriminator we use radiosonde data from the University of Wyoming.
The function get_radiosonde
tries to find the next next available radiosonde measurement on the given date.
[5]:
rs_time = dt.datetime(2014, 6, 10, 12, 0)
import urllib
try:
rs_data, rs_meta = wrl.io.get_radiosonde(10410, rs_time)
except (urllib.error.HTTPError, urllib.error.URLError):
dataf = wrl.util.get_wradlib_data_file("misc/radiosonde_10410_20140610_1200.h5")
rs_data, _ = wrl.io.from_hdf5(dataf)
metaf = wrl.util.get_wradlib_data_file("misc/radiosonde_10410_20140610_1200.json")
with open(metaf, "r") as infile:
import json
rs_meta = json.load(infile)
rs_meta
[5]:
{'Station identifier': 'EDZE',
'Station number': 10410,
'Observation time': datetime.datetime(2014, 6, 10, 12, 0),
'Station latitude': 51.4,
'Station longitude': 6.97,
'Station elevation': 147.0,
'Showalter index': 1.65,
'Lifted index': -5.85,
'LIFT computed using virtual temperature': -6.24,
'SWEAT index': 89.02,
'K index': 23.7,
'Cross totals index': 17.3,
'Vertical totals index': 31.3,
'Totals totals index': 48.6,
'Convective Available Potential Energy': 1542.9,
'CAPE using virtual temperature': 1644.44,
'Convective Inhibition': -139.39,
'CINS using virtual temperature': -79.9,
'Equilibrum Level': 202.46,
'Equilibrum Level using virtual temperature': 202.39,
'Level of Free Convection': 736.36,
'LFCT using virtual temperature': 773.09,
'Bulk Richardson Number': 57.4,
'Bulk Richardson Number using CAPV': 61.18,
'Temp [K] of the Lifted Condensation Level': 288.22,
'Pres [hPa] of the Lifted Condensation Level': 882.28,
'Equivalent potential temp [K] of the LCL': 334.9,
'Mean mixed layer potential temperature': 298.74,
'Mean mixed layer mixing ratio': 12.42,
'1000 hPa to 500 hPa thickness': 5663.0,
'Precipitable water [mm] for entire sounding': 28.11,
'quantity': {'PRES': 'hPa',
'HGHT': 'm',
'TEMP': 'C',
'DWPT': 'C',
'FRPT': 'C',
'RELH': '%',
'RELI': '%',
'MIXR': 'g/kg',
'DRCT': 'deg',
'SKNT': 'knot',
'THTA': 'K',
'THTE': 'K',
'THTV': 'K'}}
Extract Temperature and Height#
[6]:
stemp = rs_data["TEMP"]
sheight = rs_data["HGHT"]
# remove nans
idx = np.isfinite(stemp)
stemp = stemp[idx]
sheight = sheight[idx]
Create DataArray#
[7]:
stemp_da = xr.DataArray(
data=stemp,
dims=["height"],
coords=dict(
height=(["height"], sheight),
),
attrs=dict(
description="Temperature.",
units="degC",
),
)
display(stemp_da)
<xarray.DataArray (height: 97)> array([ 25.6, 19.8, 21.6, 21.6, 21.6, 19.7, 16.7, 16.4, 15.6, 13.4, 5. , 3.2, 1.8, -5.3, -6.7, -9.3, -12.5, -14.9, -18.5, -18.9, -23.5, -25.5, -31.9, -32.7, -37. , -40.7, -41.9, -46.5, -50.5, -51.1, -60.7, -61.5, -65.7, -66.1, -64.1, -60.5, -59.1, -59.1, -59.4, -59.9, -60.4, -60.7, -58.5, -57.4, -55.5, -54.3, -54.9, -55.1, -55.3, -55.5, -55.9, -56.1, -55.4, -54.4, -53.4, -52.5, -52.7, -53.2, -55.6, -55.9, -55.5, -55.1, -54.9, -54.8, -54.6, -54.5, -54.3, -54.2, -54.2, -54.1, -53.9, -53.8, -52.5, -52.2, -51.8, -51.5, -50.7, -49.5, -48.9, -48.5, -48.6, -49.5, -49.7, -49.9, -49.1, -48.5, -47.6, -46.7, -45.8, -44.8, -43.9, -39.5, -37.3, -35.9, -36.1, -36.7, -35.5]) Coordinates: * height (height) float64 147.0 744.0 828.0 ... 3.155e+04 3.228e+04 Attributes: description: Temperature. units: degC
Interpolate to higher resolution#
[8]:
hmax = 30000.0
ht = np.arange(0.0, hmax)
itemp_da = stemp_da.interp({"height": ht})
display(itemp_da)
<xarray.DataArray (height: 30000)> array([ nan, nan, nan, ..., -38.47842779, -38.47440585, -38.47038391]) Coordinates: * height (height) float64 0.0 1.0 2.0 3.0 4.0 ... 3e+04 3e+04 3e+04 3e+04 Attributes: description: Temperature. units: degC
Fix Temperature below first measurement#
[9]:
itemp_da = itemp_da.bfill(dim="height")
Plot Temperature Profile#
[10]:
fig = plt.figure(figsize=(5, 10))
ax = fig.add_subplot(111)
itemp_da.plot(y="height", ax=ax, marker="o", zorder=0, c="r")
stemp_da.to_dataset(name="stemp").plot.scatter(
x="stemp", y="height", ax=ax, marker="o", c="b", zorder=1
)
ax.grid(True)

Prepare Radar Data#
Load Radar Data#
[11]:
# read the radar volume scan
filename = "hdf5/2014-06-09--185000.rhi.mvol"
filename = wrl.util.get_wradlib_data_file(filename)
Downloading file 'hdf5/2014-06-09--185000.rhi.mvol' from 'https://github.com/wradlib/wradlib-data/raw/pooch/data/hdf5/2014-06-09--185000.rhi.mvol' to '/home/runner/work/wradlib/wradlib/wradlib-data'.
Extract data for georeferencing#
[12]:
import xradar as xd
swp = xr.open_dataset(
filename, engine=xd.io.backends.GamicBackendEntrypoint, group="sweep_0", chunks={}
)
swp = xd.util.remove_duplicate_rays(swp)
swp = xd.util.reindex_angle(
swp, start_angle=0, stop_angle=90, angle_res=0.2, direction=1
)
swp
[12]:
<xarray.Dataset> Dimensions: (range: 667, elevation: 450) Coordinates: * range (range) float32 37.5 112.5 187.5 ... 4.991e+04 4.999e+04 * elevation (elevation) float64 0.1 0.3 0.5 0.7 ... 89.5 89.7 89.9 azimuth (elevation) float64 dask.array<chunksize=(450,), meta=np.ndarray> time (elevation) datetime64[ns] dask.array<chunksize=(450,), meta=np.ndarray> sweep_mode <U3 ... longitude float64 ... latitude float64 ... altitude float64 ... Data variables: (12/16) KDP (elevation, range) float32 dask.array<chunksize=(450, 667), meta=np.ndarray> PHIDP (elevation, range) float32 dask.array<chunksize=(450, 667), meta=np.ndarray> DBZH (elevation, range) float32 dask.array<chunksize=(450, 667), meta=np.ndarray> DBZV (elevation, range) float32 dask.array<chunksize=(450, 667), meta=np.ndarray> RHOHV (elevation, range) float32 dask.array<chunksize=(450, 667), meta=np.ndarray> DBTH (elevation, range) float32 dask.array<chunksize=(450, 667), meta=np.ndarray> ... ... WRADV (elevation, range) float32 dask.array<chunksize=(450, 667), meta=np.ndarray> ZDR (elevation, range) float32 dask.array<chunksize=(450, 667), meta=np.ndarray> sweep_number int64 ... prt_mode <U7 ... follow_mode <U7 ... sweep_fixed_angle float64 ...
[13]:
swp.azimuth.load(), swp.time.load()
[13]:
(<xarray.DataArray 'azimuth' (elevation: 450)>
array([225. , 225. , 225. , 225.00549316,
405.00549316, 225.00549316, 405.00549316, 225. ,
225.00549316, 225.01098633, 405.00549316, 225.00549316,
405.00549316, 225.00549316, 225.01098633, 225.01098633,
405.00549316, 225.00549316, 405.00549316, 225. ,
225.00549316, 225.01098633, 405.00549316, 225.00549316,
225.01098633, 405.00549316, 225. , 225.01098633,
225. , 225. , 225. , 225. ,
225. , 225. , 225.00549316, 225.01098633,
405.00549316, 225.00549316, 225.01098633, 405.00549316,
225.00549316, 405.00549316, 225.00549316, 225.00549316,
405.00549316, 225.00549316, 405.00549316, 225. ,
225.00549316, 405.00549316, 225. , 225. ,
225.00549316, 405.00549316, 225.00549316, 405.00549316,
225. , 225. , 225. , 225. ,
225.00549316, 225. , 225. , 225. ,
225. , 225.00549316, 405.00549316, 225.00549316,
225.01098633, 405.00549316, 225. , 225. ,
225. , 225. , 225. , 225. ,
225. , 225. , 225. , 225. ,
...
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367])
Coordinates:
* elevation (elevation) float64 0.1 0.3 0.5 0.7 0.9 ... 89.3 89.5 89.7 89.9
azimuth (elevation) float64 225.0 225.0 225.0 ... 225.0 225.0 225.0
time (elevation) datetime64[ns] 2014-06-09T18:50:01 ... 2014-06-09...
sweep_mode <U3 'rhi'
longitude float64 7.072
latitude float64 50.73
altitude float64 99.5
Attributes:
standard_name: ray_azimuth_angle
long_name: azimuth_angle_from_true_north
units: degrees
axis: radial_azimuth_coordinate,
<xarray.DataArray 'time' (elevation: 450)>
array(['2014-06-09T18:50:01.000000000', '2014-06-09T18:50:04.000000000',
'2014-06-09T18:50:04.000000000', '2014-06-09T18:50:04.000000000',
'2014-06-09T18:50:04.000000000', '2014-06-09T18:50:04.000000000',
'2014-06-09T18:50:04.000000000', '2014-06-09T18:50:04.000000000',
'2014-06-09T18:50:04.000000000', '2014-06-09T18:50:04.000000000',
'2014-06-09T18:50:04.000000000', '2014-06-09T18:50:04.000000000',
'2014-06-09T18:50:04.000000000', '2014-06-09T18:50:04.000000000',
'2014-06-09T18:50:04.000000000', '2014-06-09T18:50:04.000000000',
'2014-06-09T18:50:04.000000000', '2014-06-09T18:50:04.000000000',
'2014-06-09T18:50:05.000000000', '2014-06-09T18:50:05.000000000',
'2014-06-09T18:50:05.000000000', '2014-06-09T18:50:05.000000000',
'2014-06-09T18:50:05.000000000', '2014-06-09T18:50:05.000000000',
'2014-06-09T18:50:05.000000000', '2014-06-09T18:50:05.000000000',
'2014-06-09T18:50:05.000000000', '2014-06-09T18:50:05.000000000',
'2014-06-09T18:50:05.000000000', '2014-06-09T18:50:05.000000000',
'2014-06-09T18:50:05.000000000', '2014-06-09T18:50:05.000000000',
'2014-06-09T18:50:05.000000000', '2014-06-09T18:50:05.000000000',
'2014-06-09T18:50:05.000000000', '2014-06-09T18:50:05.000000000',
'2014-06-09T18:50:05.000000000', '2014-06-09T18:50:05.000000000',
'2014-06-09T18:50:06.000000000', '2014-06-09T18:50:06.000000000',
...
'2014-06-09T18:50:24.000000000', '2014-06-09T18:50:24.000000000',
'2014-06-09T18:50:24.000000000', '2014-06-09T18:50:24.000000000',
'2014-06-09T18:50:25.000000000', '2014-06-09T18:50:25.000000000',
'2014-06-09T18:50:25.000000000', '2014-06-09T18:50:25.000000000',
'2014-06-09T18:50:25.000000000', '2014-06-09T18:50:25.000000000',
'2014-06-09T18:50:25.000000000', '2014-06-09T18:50:25.000000000',
'2014-06-09T18:50:25.000000000', '2014-06-09T18:50:25.000000000',
'2014-06-09T18:50:25.000000000', '2014-06-09T18:50:25.000000000',
'2014-06-09T18:50:25.000000000', '2014-06-09T18:50:25.000000000',
'2014-06-09T18:50:25.000000000', '2014-06-09T18:50:25.000000000',
'2014-06-09T18:50:25.000000000', '2014-06-09T18:50:25.000000000',
'2014-06-09T18:50:25.000000000', '2014-06-09T18:50:25.000000000',
'2014-06-09T18:50:26.000000000', '2014-06-09T18:50:26.000000000',
'2014-06-09T18:50:26.000000000', '2014-06-09T18:50:26.000000000',
'2014-06-09T18:50:26.000000000', '2014-06-09T18:50:26.000000000',
'2014-06-09T18:50:26.000000000', '2014-06-09T18:50:26.000000000',
'2014-06-09T18:50:26.000000000', '2014-06-09T18:50:26.000000000',
'2014-06-09T18:50:26.000000000', '2014-06-09T18:50:26.000000000',
'2014-06-09T18:50:26.000000000', '2014-06-09T18:50:27.000000000'],
dtype='datetime64[ns]')
Coordinates:
* elevation (elevation) float64 0.1 0.3 0.5 0.7 0.9 ... 89.3 89.5 89.7 89.9
azimuth (elevation) float64 225.0 225.0 225.0 ... 225.0 225.0 225.0
time (elevation) datetime64[ns] 2014-06-09T18:50:01 ... 2014-06-09...
sweep_mode <U3 'rhi'
longitude float64 7.072
latitude float64 50.73
altitude float64 99.5
Attributes:
standard_name: time)
[14]:
swp.azimuth.values
[14]:
array([225. , 225. , 225. , 225.00549316,
405.00549316, 225.00549316, 405.00549316, 225. ,
225.00549316, 225.01098633, 405.00549316, 225.00549316,
405.00549316, 225.00549316, 225.01098633, 225.01098633,
405.00549316, 225.00549316, 405.00549316, 225. ,
225.00549316, 225.01098633, 405.00549316, 225.00549316,
225.01098633, 405.00549316, 225. , 225.01098633,
225. , 225. , 225. , 225. ,
225. , 225. , 225.00549316, 225.01098633,
405.00549316, 225.00549316, 225.01098633, 405.00549316,
225.00549316, 405.00549316, 225.00549316, 225.00549316,
405.00549316, 225.00549316, 405.00549316, 225. ,
225.00549316, 405.00549316, 225. , 225. ,
225.00549316, 405.00549316, 225.00549316, 405.00549316,
225. , 225. , 225. , 225. ,
225.00549316, 225. , 225. , 225. ,
225. , 225.00549316, 405.00549316, 225.00549316,
225.01098633, 405.00549316, 225. , 225. ,
225. , 225. , 225. , 225. ,
225. , 225. , 225. , 225. ,
225. , 225.00549316, 405.00549316, 225. ,
225. , 225.00549316, 225.01098633, 405.00549316,
225.00549316, 225.01098633, 405.00549316, 225. ,
225. , 225. , 225.00549316, 405.00549316,
225.00549316, 405.00549316, 225. , 225. ,
225. , 225. , 225. , 225. ,
225. , 225. , 225. , 225. ,
225. , 225. , 225.00549316, 225.01098633,
405.00549316, 225. , 225.00549316, 225.01098633,
405.00549316, 405.00549316, 225. , 225.00549316,
405.00549316, 225. , 225. , 225. ,
225. , 225. , 225. , 225. ,
404.99450684, 404.98352051, 224.98352051, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.99450684, 404.99450684, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367])
Get Heights of Radar Bins#
[15]:
swp = swp.wrl.georef.georeference()
swp.azimuth.values
[15]:
array([225. , 225. , 225. , 225.00549316,
405.00549316, 225.00549316, 405.00549316, 225. ,
225.00549316, 225.01098633, 405.00549316, 225.00549316,
405.00549316, 225.00549316, 225.01098633, 225.01098633,
405.00549316, 225.00549316, 405.00549316, 225. ,
225.00549316, 225.01098633, 405.00549316, 225.00549316,
225.01098633, 405.00549316, 225. , 225.01098633,
225. , 225. , 225. , 225. ,
225. , 225. , 225.00549316, 225.01098633,
405.00549316, 225.00549316, 225.01098633, 405.00549316,
225.00549316, 405.00549316, 225.00549316, 225.00549316,
405.00549316, 225.00549316, 405.00549316, 225. ,
225.00549316, 405.00549316, 225. , 225. ,
225.00549316, 405.00549316, 225.00549316, 405.00549316,
225. , 225. , 225. , 225. ,
225.00549316, 225. , 225. , 225. ,
225. , 225.00549316, 405.00549316, 225.00549316,
225.01098633, 405.00549316, 225. , 225. ,
225. , 225. , 225. , 225. ,
225. , 225. , 225. , 225. ,
225. , 225.00549316, 405.00549316, 225. ,
225. , 225.00549316, 225.01098633, 405.00549316,
225.00549316, 225.01098633, 405.00549316, 225. ,
225. , 225. , 225.00549316, 405.00549316,
225.00549316, 405.00549316, 225. , 225. ,
225. , 225. , 225. , 225. ,
225. , 225. , 225. , 225. ,
225. , 225. , 225.00549316, 225.01098633,
405.00549316, 225. , 225.00549316, 225.01098633,
405.00549316, 405.00549316, 225. , 225.00549316,
405.00549316, 225. , 225. , 225. ,
225. , 225. , 225. , 225. ,
404.99450684, 404.98352051, 224.98352051, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.99450684, 404.99450684, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367, 224.98901367, 224.98901367,
224.98901367, 224.98901367])
Plot RHI of Heights#
[16]:
fig = plt.figure(figsize=(8, 7))
ax = fig.add_subplot(111)
cmap = mpl.cm.viridis
swp.z.plot(x="gr", y="z", ax=ax, cbar_kwargs=dict(label="Height [m]"))
ax.set_xlabel("Range [m]")
ax.set_ylabel("Height [m]")
ax.grid(True)
plt.show()

Get Index into High Res Height Array#
[17]:
def merge_radar_profile(rds, cds):
cds = cds.interp({"height": rds.z}, method="linear")
rds = rds.assign({"TEMP": cds})
return rds
[18]:
hmc_ds = swp.pipe(merge_radar_profile, itemp_da)
display(hmc_ds)
<xarray.Dataset> Dimensions: (range: 667, elevation: 450) Coordinates: (12/16) * range (range) float32 37.5 112.5 187.5 ... 4.991e+04 4.999e+04 * elevation (elevation) float64 0.1 0.3 0.5 0.7 ... 89.5 89.7 89.9 azimuth (elevation) float64 225.0 225.0 225.0 ... 225.0 225.0 time (elevation) datetime64[ns] 2014-06-09T18:50:01 ... 201... sweep_mode <U3 'rhi' longitude float64 7.072 ... ... z (elevation, range) float64 99.63 99.76 ... 5.009e+04 gr (elevation, range) float64 18.39 93.39 ... 67.49 67.62 rays (elevation, range) float64 0.1 0.1 0.1 ... 89.9 89.9 89.9 bins (elevation, range) float32 37.5 112.5 ... 4.999e+04 crs_wkt int64 0 height (elevation, range) float64 99.63 99.76 ... 5.009e+04 Data variables: (12/17) KDP (elevation, range) float32 dask.array<chunksize=(450, 667), meta=np.ndarray> PHIDP (elevation, range) float32 dask.array<chunksize=(450, 667), meta=np.ndarray> DBZH (elevation, range) float32 dask.array<chunksize=(450, 667), meta=np.ndarray> DBZV (elevation, range) float32 dask.array<chunksize=(450, 667), meta=np.ndarray> RHOHV (elevation, range) float32 dask.array<chunksize=(450, 667), meta=np.ndarray> DBTH (elevation, range) float32 dask.array<chunksize=(450, 667), meta=np.ndarray> ... ... ZDR (elevation, range) float32 dask.array<chunksize=(450, 667), meta=np.ndarray> sweep_number int64 ... prt_mode <U7 ... follow_mode <U7 ... sweep_fixed_angle float64 ... TEMP (elevation, range) float64 25.6 25.6 25.6 ... nan nan nan
[19]:
fig = plt.figure(figsize=(10, 5))
ax = fig.add_subplot(111)
hmc_ds.TEMP.plot(
x="gr",
y="z",
cmap=cmap,
ax=ax,
add_colorbar=True,
cbar_kwargs=dict(label="Temperature [°C]"),
)
ax.set_xlabel("Range [m]")
ax.set_ylabel("Range [m]")
ax.set_aspect("equal")
ax.set_ylim(0, 30000)
plt.show()

HMC Workflow#
Setup Independent Observable \(Z_H\)#
Retrieve membership function values based on independent observable
[20]:
%%time
msf_val = msf.wrl.classify.msf_index_indep(swp.DBZH)
display(msf_val)
<xarray.DataArray 'msf_index_indep' (hmc: 11, obs: 5, elevation: 450, range: 667, trapezoid: 4)> dask.array<transpose, shape=(11, 5, 450, 667, 4), dtype=int32, chunksize=(11, 5, 450, 667, 4), chunktype=numpy.ndarray> Coordinates: (12/17) * hmc (hmc) object 'LR' 'MR' 'HR' 'LD' 'HL' ... 'DS' 'WS' 'HC' 'VC' * obs (obs) object 'ZH' 'ZDR' 'RHO' 'KDP' 'TEMP' * range (range) float32 37.5 112.5 187.5 ... 4.991e+04 4.999e+04 * elevation (elevation) float64 0.1 0.3 0.5 0.7 0.9 ... 89.3 89.5 89.7 89.9 azimuth (elevation) float64 225.0 225.0 225.0 ... 225.0 225.0 225.0 time (elevation) datetime64[ns] 2014-06-09T18:50:01 ... 2014-06-09... ... ... y (elevation, range) float64 -26.52 -79.55 ... -61.25 -61.34 z (elevation, range) float64 99.63 99.76 ... 5.001e+04 5.009e+04 gr (elevation, range) float64 18.39 93.39 168.4 ... 67.49 67.62 rays (elevation, range) float64 0.1 0.1 0.1 0.1 ... 89.9 89.9 89.9 bins (elevation, range) float32 37.5 112.5 ... 4.991e+04 4.999e+04 crs_wkt int64 0 Dimensions without coordinates: trapezoid
CPU times: user 51.2 ms, sys: 197 µs, total: 51.4 ms
Wall time: 51.6 ms
Fuzzyfication#
[21]:
%%time
fu = msf_val.wrl.classify.fuzzyfi(
hmc_ds, dict(ZH="DBZH", ZDR="ZDR", RHO="RHOHV", KDP="KDP", TEMP="TEMP")
)
CPU times: user 13.1 ms, sys: 0 ns, total: 13.1 ms
Wall time: 13.1 ms
Probability#
[22]:
# weights dataset
w = xr.Dataset(dict(ZH=2.0, ZDR=1.0, RHO=1.0, KDP=1.0, TEMP=1.0))
display(w)
<xarray.Dataset> Dimensions: () Data variables: ZH float64 2.0 ZDR float64 1.0 RHO float64 1.0 KDP float64 1.0 TEMP float64 1.0
[23]:
%%time
prob = fu.wrl.classify.probability(w).compute()
display(prob)
<xarray.DataArray (hmc: 11, elevation: 450, range: 667)> array([[[0.16666667, 0.5 , 0.5 , ..., 0. , 0. , 0. ], [0. , 0.5 , 0.66666667, ..., 0. , 0. , 0. ], [0. , 0.5 , 0.5 , ..., 0. , 0. , 0. ], ..., [0.16666667, 0.66666667, 0.5 , ..., 0. , 0. , 0. ], [0.16666667, 0.66666667, 0.5 , ..., 0. , 0. , 0. ], [0.16666667, 0.66666667, 0.5 , ..., 0. , 0. , 0. ]], [[0. , 0. , 0. , ..., 0. , 0. , 0. ], [0. , 0. , 0. , ..., 0. , 0. , 0. ], [0. , 0. , 0. , ..., 0. , 0. , 0. ], ... [0.29812113, 0.33333333, 0.33333333, ..., 0. , 0. , 0. ], [0.31296539, 0.33333333, 0.33333333, ..., 0. , 0. , 0. ], [0.32917684, 0.33333333, 0.33333333, ..., 0. , 0. , 0. ]], [[0.29480082, 0.33333333, 0.33333333, ..., 0. , 0. , 0. ], [0.25280711, 0.33333333, 0.33333333, ..., 0. , 0. , 0. ], [0.25808055, 0.33333333, 0.33333333, ..., 0. , 0. , 0. ], ..., [0.29812113, 0.33333333, 0.33333333, ..., 0. , 0. , 0. ], [0.31296539, 0.33333333, 0.33333333, ..., 0. , 0. , 0. ], [0.32917684, 0.33333333, 0.33333333, ..., 0. , 0. , 0. ]]]) Coordinates: (12/17) * hmc (hmc) object 'LR' 'MR' 'HR' 'LD' 'HL' ... 'DS' 'WS' 'HC' 'VC' * range (range) float32 37.5 112.5 187.5 ... 4.991e+04 4.999e+04 * elevation (elevation) float64 0.1 0.3 0.5 0.7 0.9 ... 89.3 89.5 89.7 89.9 azimuth (elevation) float64 225.0 225.0 225.0 ... 225.0 225.0 225.0 time (elevation) datetime64[ns] 2014-06-09T18:50:01 ... 2014-06-09... sweep_mode <U3 'rhi' ... ... z (elevation, range) float64 99.63 99.76 ... 5.001e+04 5.009e+04 gr (elevation, range) float64 18.39 93.39 168.4 ... 67.49 67.62 rays (elevation, range) float64 0.1 0.1 0.1 0.1 ... 89.9 89.9 89.9 bins (elevation, range) float32 37.5 112.5 ... 4.991e+04 4.999e+04 crs_wkt int64 0 height (elevation, range) float64 99.63 99.76 ... 5.001e+04 5.009e+04
CPU times: user 1.05 s, sys: 782 ms, total: 1.83 s
Wall time: 1.87 s
[24]:
# prob = prob.compute()
Classification#
[25]:
cl_res = prob.wrl.classify.classify(threshold=0.0)
display(cl_res)
<xarray.DataArray (hmc: 12, elevation: 450, range: 667)> array([[[0.16666667, 0.5 , 0.5 , ..., 0. , 0. , 0. ], [0. , 0.5 , 0.66666667, ..., 0. , 0. , 0. ], [0. , 0.5 , 0.5 , ..., 0. , 0. , 0. ], ..., [0.16666667, 0.66666667, 0.5 , ..., 0. , 0. , 0. ], [0.16666667, 0.66666667, 0.5 , ..., 0. , 0. , 0. ], [0.16666667, 0.66666667, 0.5 , ..., 0. , 0. , 0. ]], [[0. , 0. , 0. , ..., 0. , 0. , 0. ], [0. , 0. , 0. , ..., 0. , 0. , 0. ], [0. , 0. , 0. , ..., 0. , 0. , 0. ], ... [0.29812113, 0.33333333, 0.33333333, ..., 0. , 0. , 0. ], [0.31296539, 0.33333333, 0.33333333, ..., 0. , 0. , 0. ], [0.32917684, 0.33333333, 0.33333333, ..., 0. , 0. , 0. ]], [[0. , 0. , 0. , ..., 1. , 1. , 1. ], [0. , 0. , 0. , ..., 1. , 1. , 1. ], [0. , 0. , 0. , ..., 1. , 1. , 1. ], ..., [0. , 0. , 0. , ..., 1. , 1. , 1. ], [0. , 0. , 0. , ..., 1. , 1. , 1. ], [0. , 0. , 0. , ..., 1. , 1. , 1. ]]]) Coordinates: (12/17) * hmc (hmc) object 'LR' 'MR' 'HR' 'LD' 'HL' ... 'WS' 'HC' 'VC' 'NP' * range (range) float32 37.5 112.5 187.5 ... 4.991e+04 4.999e+04 * elevation (elevation) float64 0.1 0.3 0.5 0.7 0.9 ... 89.3 89.5 89.7 89.9 azimuth (elevation) float64 225.0 225.0 225.0 ... 225.0 225.0 225.0 time (elevation) datetime64[ns] 2014-06-09T18:50:01 ... 2014-06-09... sweep_mode <U3 'rhi' ... ... z (elevation, range) float64 99.63 99.76 ... 5.001e+04 5.009e+04 gr (elevation, range) float64 18.39 93.39 168.4 ... 67.49 67.62 rays (elevation, range) float64 0.1 0.1 0.1 0.1 ... 89.9 89.9 89.9 bins (elevation, range) float32 37.5 112.5 ... 4.991e+04 4.999e+04 crs_wkt int64 0 height (elevation, range) float64 99.63 99.76 ... 5.001e+04 5.009e+04
Compute#
[26]:
%%time
cl_res = cl_res.compute()
cl_res = cl_res.assign_coords(sweep_mode="rhi")
CPU times: user 2.86 ms, sys: 0 ns, total: 2.86 ms
Wall time: 2.87 ms
HMC Results#
Plot Probability of HMC Types#
[27]:
prob = prob.assign_coords(hmc=np.array(list(pr_types.values())).T[1][:11])
prob = prob.where(prob > 0)
prob.plot(x="x", y="y", col="hmc", col_wrap=4, cbar_kwargs=dict(label="Probability"))
[27]:
<xarray.plot.facetgrid.FacetGrid at 0x7f267d519850>

Plot maximum probability#
[28]:
fig = plt.figure(figsize=(10, 6))
cmap = "cubehelix"
im = cl_res.max("hmc").wrl.vis.plot(
ax=111,
crs={"angular_spacing": 20.0, "radial_spacing": 12.0, "latmin": 2.5},
cmap=cmap,
fig=fig,
)
cgax = plt.gca()
cbar = plt.colorbar(im, ax=cgax, fraction=0.046, pad=0.05)
cbar.set_label("Probability")
cgax.set_xlim(0, 40000)
cgax.set_ylim(0, 14000)
t = cgax.set_title("Hydrometeorclassification", y=1.05)
caax = cgax.parasites[0]
caax.set_xlabel("Range [m]")
caax.set_ylabel("Range [m]")
plt.show()

Plot classification result#
[29]:
bounds = np.arange(-0.5, prob.shape[0] + 0.6, 1)
ticks = np.arange(0, prob.shape[0] + 1)
cmap = mpl.cm.get_cmap("cubehelix", len(ticks))
norm = mpl.colors.BoundaryNorm(bounds, cmap.N)
[30]:
hydro = cl_res.argmax("hmc")
hydro.attrs = dict(long_name="Hydrometeorclassification")
hydro = hydro.assign_coords(sweep_mode="rhi")
[31]:
fig = plt.figure(figsize=(10, 8))
im = hydro.wrl.vis.plot(
ax=111,
crs={"angular_spacing": 20.0, "radial_spacing": 12.0, "latmin": 2.5},
norm=norm,
cmap=cmap,
fig=fig,
)
cgax = plt.gca()
caax = cgax.parasites[0]
paax = cgax.parasites[1]
cbar = plt.colorbar(im, ticks=ticks, ax=cgax, fraction=0.046, norm=norm, pad=0.05)
cbar.set_label("Hydrometeorclass")
caax.set_xlabel("Range [km]")
caax.set_ylabel("Range [km]")
labels = [pr_types[i][1] for i, _ in enumerate(pr_types)]
labels = cbar.ax.set_yticklabels(labels)
t = cgax.set_title("Hydrometeorclassification", y=1.05)
cgax.set_xlim(0, 40000)
cgax.set_ylim(0, 14000)
plt.tight_layout()
