xarray Rainbow5 backend#

In this example, we read Rainbow5 data files using the xradar rainbow xarray backend.

[1]:
import glob
import gzip
import io
import wradlib as wrl
import warnings

warnings.filterwarnings("ignore")
import matplotlib.pyplot as pl
import numpy as np
import xradar as xd
import datatree as xt
import xarray as xr

try:
    get_ipython().run_line_magic("matplotlib inline")
except:
    pl.ion()

Load Rainbow5 Volume Data#

[2]:
fpath = "rainbow/2013051000000600dBZ.vol"
f = wrl.util.get_wradlib_data_file(fpath)
vol = xd.io.open_rainbow_datatree(f, reindex_angle=False)
Downloading file 'rainbow/2013051000000600dBZ.vol' from 'https://github.com/wradlib/wradlib-data/raw/pooch/data/rainbow/2013051000000600dBZ.vol' to '/home/runner/work/wradlib/wradlib/wradlib-data'.

Inspect RadarVolume#

[3]:
display(vol)
<xarray.DatasetView>
Dimensions:              ()
Data variables:
    volume_number        int64 0
    platform_type        <U5 'fixed'
    instrument_type      <U5 'radar'
    time_coverage_start  <U20 '2013-05-10T00:00:06Z'
    time_coverage_end    <U20 '2013-05-10T00:03:14Z'
    longitude            float64 6.38
    altitude             float64 116.7
    latitude             float64 50.86
Attributes:
    Conventions:      None
    version:          None
    title:            None
    institution:      None
    references:       None
    source:           None
    history:          None
    comment:          im/exported using xradar
    instrument_name:  None

Inspect root group#

The sweep dimension contains the number of scans in this radar volume. Further the dataset consists of variables (location coordinates, time_coverage) and attributes (Conventions, metadata).

[4]:
vol.root
[4]:
<xarray.DatasetView>
Dimensions:              ()
Data variables:
    volume_number        int64 0
    platform_type        <U5 'fixed'
    instrument_type      <U5 'radar'
    time_coverage_start  <U20 '2013-05-10T00:00:06Z'
    time_coverage_end    <U20 '2013-05-10T00:03:14Z'
    longitude            float64 6.38
    altitude             float64 116.7
    latitude             float64 50.86
Attributes:
    Conventions:      None
    version:          None
    title:            None
    institution:      None
    references:       None
    source:           None
    history:          None
    comment:          im/exported using xradar
    instrument_name:  None

Inspect sweep group(s)#

The sweep-groups can be accessed via their respective keys. The dimensions consist of range and time with added coordinates azimuth, elevation, range and time. There will be variables like radar moments (DBZH etc.) and sweep-dependend metadata (like fixed_angle, sweep_mode etc.).

[5]:
display(vol["sweep_0"])
<xarray.DatasetView>
Dimensions:            (azimuth: 361, range: 400)
Coordinates:
  * azimuth            (azimuth) float64 0.5492 1.505 2.549 ... 358.5 359.5
    elevation          (azimuth) float64 ...
  * range              (range) float32 125.0 375.0 625.0 ... 9.962e+04 9.988e+04
    time               (azimuth) datetime64[ns] 2013-05-10T00:00:15.530303500...
    longitude          float64 ...
    latitude           float64 ...
    altitude           float64 ...
Data variables:
    DBZH               (azimuth, range) float32 ...
    sweep_mode         <U20 ...
    sweep_number       int64 ...
    prt_mode           <U7 ...
    follow_mode        <U7 ...
    sweep_fixed_angle  float64 ...

Goereferencing#

[6]:
swp = vol["sweep_0"].ds.copy()
swp = swp.assign_coords(sweep_mode=swp.sweep_mode)
swp = swp.pipe(wrl.georef.georeference_dataset)

Plotting#

[7]:
swp.DBZH.plot.pcolormesh(x="x", y="y")
pl.gca().set_aspect("equal")
../../_images/notebooks_fileio_wradlib_rainbow_backend_14_0.png
[8]:
fig = pl.figure(figsize=(10, 10))
swp.DBZH.wrl.vis.plot(proj="cg", fig=fig)
[8]:
<matplotlib.collections.QuadMesh at 0x7f589ed297d0>
../../_images/notebooks_fileio_wradlib_rainbow_backend_15_1.png
[9]:
import cartopy
import cartopy.crs as ccrs
import cartopy.feature as cfeature

map_trans = ccrs.AzimuthalEquidistant(
    central_latitude=swp.latitude.values, central_longitude=swp.longitude.values
)
[10]:
map_proj = ccrs.AzimuthalEquidistant(
    central_latitude=swp.latitude.values, central_longitude=swp.longitude.values
)
pm = swp.DBZH.wrl.vis.plot(proj=map_proj)
ax = pl.gca()
ax.gridlines(crs=map_proj)
print(ax)
< GeoAxes: +proj=aeqd +ellps=WGS84 +lon_0=6.379967 +lat_0=50.856633 +x_0=0.0 +y_0=0.0 +no_defs +type=crs >
../../_images/notebooks_fileio_wradlib_rainbow_backend_17_1.png
[11]:
map_proj = ccrs.Mercator(central_longitude=swp.longitude.values)
fig = pl.figure(figsize=(10, 8))
ax = fig.add_subplot(111, projection=map_proj)
pm = swp.DBZH.wrl.vis.plot(ax=ax)
ax.gridlines(draw_labels=True)
[11]:
<cartopy.mpl.gridliner.Gridliner at 0x7f589ec6cd90>
../../_images/notebooks_fileio_wradlib_rainbow_backend_18_1.png
[12]:
import cartopy.feature as cfeature


def plot_borders(ax):
    borders = cfeature.NaturalEarthFeature(
        category="physical", name="coastline", scale="10m", facecolor="none"
    )
    ax.add_feature(borders, edgecolor="black", lw=2, zorder=4)


map_proj = ccrs.Mercator(central_longitude=swp.longitude.values)
fig = pl.figure(figsize=(10, 8))
ax = fig.add_subplot(111, projection=map_proj)

DBZH = swp.DBZH
pm = DBZH.where(DBZH > 0).wrl.vis.plot(ax=ax)
plot_borders(ax)
ax.gridlines(draw_labels=True)
[12]:
<cartopy.mpl.gridliner.Gridliner at 0x7f589ebefe10>
../../_images/notebooks_fileio_wradlib_rainbow_backend_19_1.png
[13]:
import matplotlib.path as mpath

theta = np.linspace(0, 2 * np.pi, 100)
center, radius = [0.5, 0.5], 0.5
verts = np.vstack([np.sin(theta), np.cos(theta)]).T
circle = mpath.Path(verts * radius + center)

map_proj = ccrs.AzimuthalEquidistant(
    central_latitude=swp.latitude.values,
    central_longitude=swp.longitude.values,
)
fig = pl.figure(figsize=(10, 8))
ax = fig.add_subplot(111, projection=map_proj)
ax.set_boundary(circle, transform=ax.transAxes)

pm = swp.DBZH.wrl.vis.plot(proj=map_proj, ax=ax)
ax = pl.gca()
ax.gridlines(crs=map_proj)
[13]:
<cartopy.mpl.gridliner.Gridliner at 0x7f589ebedf50>
../../_images/notebooks_fileio_wradlib_rainbow_backend_20_1.png
[14]:
fig = pl.figure(figsize=(10, 8))
proj = ccrs.AzimuthalEquidistant(
    central_latitude=swp.latitude.values, central_longitude=swp.longitude.values
)
ax = fig.add_subplot(111, projection=proj)
pm = swp.DBZH.wrl.vis.plot(ax=ax)
ax.gridlines()
[14]:
<cartopy.mpl.gridliner.Gridliner at 0x7f589ea14690>
../../_images/notebooks_fileio_wradlib_rainbow_backend_21_1.png
[15]:
swp.DBZH.wrl.vis.plot()
[15]:
<matplotlib.collections.QuadMesh at 0x7f589ec150d0>
../../_images/notebooks_fileio_wradlib_rainbow_backend_22_1.png

Inspect radar moments#

The DataArrays can be accessed by key or by attribute. Each DataArray has dimensions and coordinates of it’s parent dataset.

[16]:
display(swp.DBZH)
<xarray.DataArray 'DBZH' (azimuth: 361, range: 400)>
array([[24.5, 21. ,  1.5, ...,  nan,  nan,  nan],
       [25.5, 22.5,  0. , ...,  nan,  nan,  nan],
       [25.5, 22. , -3. , ...,  nan,  nan,  nan],
       ...,
       [24. , 30. , -5.5, ...,  nan,  nan,  nan],
       [25.5, 29.5, -5.5, ...,  nan,  nan,  nan],
       [24.5, 23. , 22. , ...,  nan,  nan,  nan]], dtype=float32)
Coordinates: (12/14)
  * azimuth     (azimuth) float64 0.5492 1.505 2.549 3.516 ... 357.5 358.5 359.5
    elevation   (azimuth) float64 0.6 0.6 0.6 0.6 0.6 ... 0.6 0.6 0.6 0.6 0.6
  * range       (range) float32 125.0 375.0 625.0 ... 9.962e+04 9.988e+04
    time        (azimuth) datetime64[ns] 2013-05-10T00:00:15.530303500 ... 20...
    sweep_mode  <U20 'azimuth_surveillance'
    longitude   float64 6.38
    ...          ...
    x           (azimuth, range) float64 1.198 3.594 5.99 ... -859.6 -861.8
    y           (azimuth, range) float64 125.0 375.0 ... 9.96e+04 9.985e+04
    z           (azimuth, range) float64 118.0 120.6 ... 1.744e+03 1.75e+03
    gr          (azimuth, range) float64 124.8 374.7 ... 9.96e+04 9.985e+04
    rays        (azimuth, range) float64 0.5492 0.5492 0.5492 ... 359.5 359.5
    bins        (azimuth, range) float32 125.0 375.0 ... 9.962e+04 9.988e+04
Attributes:
    long_name:      Equivalent reflectivity factor H
    units:          dBZ
    standard_name:  radar_equivalent_reflectivity_factor_h

Create simple plot#

Using xarray features a simple plot can be created like this. Note the sortby('time') method, which sorts the radials by time.

[17]:
swp.DBZH.sortby("time").plot(x="range", y="time", add_labels=False)
[17]:
<matplotlib.collections.QuadMesh at 0x7f58a6f02c50>
../../_images/notebooks_fileio_wradlib_rainbow_backend_26_1.png
[18]:
fig = pl.figure(figsize=(5, 5))
pm = swp.DBZH.wrl.vis.plot(proj={"latmin": 3e3}, fig=fig)
../../_images/notebooks_fileio_wradlib_rainbow_backend_27_0.png

Mask some values#

[19]:
dbzh = swp["DBZH"].where(swp["DBZH"] >= 0)
dbzh.plot(x="x", y="y")
[19]:
<matplotlib.collections.QuadMesh at 0x7f589e9a1550>
../../_images/notebooks_fileio_wradlib_rainbow_backend_29_1.png

Export to ODIM and CfRadial2#

[20]:
xd.io.to_odim(vol, "rainbow_as_odim.h5")
xd.io.to_cfradial2(vol, "rainbow_as_cfradial2.nc")

Import again#

[21]:
vola = xd.io.open_odim_datatree("rainbow_as_odim.h5", reindex_angle=False)
display(vola)
<xarray.DatasetView>
Dimensions:              ()
Data variables:
    volume_number        int64 0
    platform_type        <U5 'fixed'
    instrument_type      <U5 'radar'
    time_coverage_start  <U20 '2013-05-10T00:00:06Z'
    time_coverage_end    <U20 '2013-05-10T00:03:14Z'
    longitude            float64 6.38
    altitude             float64 116.7
    latitude             float64 50.86
Attributes:
    Conventions:      ODIM_H5/V2_2
    version:          None
    title:            None
    institution:      None
    references:       None
    source:           None
    history:          None
    comment:          im/exported using xradar
    instrument_name:  None