Quick-view a sweep in polar or cartesian reference systems

In [1]:
import numpy as np
import matplotlib.pyplot as pl
import wradlib
import warnings
    get_ipython().magic("matplotlib inline")

Read a polar data set from the German Weather Service

In [2]:
filename = wradlib.util.get_wradlib_data_file('dx/raa00-dx_10908-0806021735-fbg---bin.gz')
In [3]:
img, meta = wradlib.io.read_dx(filename)

Inspect the data set a little

In [4]:
print("Shape of polar array: %r\n" % (img.shape,))
print("Some meta data of the DX file:")
print("\tdatetime: %r" % (meta["datetime"],))
print("\tRadar ID: %s" % (meta["radarid"],))
Shape of polar array: (360, 128)

Some meta data of the DX file:
        datetime: datetime.datetime(2008, 6, 2, 17, 35, tzinfo=<UTC>)
        Radar ID: 10908

The simplest way to plot this dataset

In [5]:
txt = pl.title('Simple PPI')

Plotting just one sector

For this purpose, we need to give the ranges and azimuths explicitly…

In [6]:
r = np.arange(40, 81)
az = np.arange(200, 251)
ax, pm = wradlib.vis.plot_ppi(img[200:250, 40:80], r, az, autoext=False)
txt = pl.title('Sector PPI')

Notice we passed one more range value and azimuth angle as we passed actual data. Otherwise the last row and column of our data would not be plotted.

Adding a crosshair to the PPI

In [7]:
# We introduce a site offset...
site = (10., 45.)
wradlib.vis.plot_ppi(img, site=site)
# ... plot a crosshair over our data...
wradlib.vis.plot_ppi_crosshair(site=site, ranges=[50, 100, 128],
                               angles=[0, 90, 180, 270],
                               circle={'edgecolor': 'white'})
pl.title('Offset and Custom Crosshair')

Placing the polar data in a projected Cartesian reference system

Using the proj keyword we tell the function to: - interpret the site coordinates as longitude/latitude - reproject the coordinates to the given projection (here: dwd-radolan composite coordinate system)

In [8]:
site=(10., 45., 0)
proj_rad = wradlib.georef.create_osr("dwd-radolan")
ax, pm = wradlib.vis.plot_ppi(img, site=site, proj=proj_rad)
# Now the crosshair ranges must be given in meters
                               ranges=[40000, 80000, 128000],
pl.title('Georeferenced/Projected PPI')

Some side effects of georeferencing

Transplanting the radar virtually moves it away from the central meridian of the projection (which is 10 degrees east). Due north now does not point straight upwards on the map.

The crosshair shows this: for the case that the lines should actually become curved, they are implemented as a piecewise linear curve with 10 vertices. The same is true for the range circles, but with more vertices, of course.

In [9]:
site=(45., 7.)
ax, pm = wradlib.vis.plot_ppi(img, site=site, proj=proj_rad)
ax = wradlib.vis.plot_ppi_crosshair(site=site,
                               ranges=[64000, 128000],
                               circle={'edgecolor': 'red'},
txt = pl.title('Projection Side Effects')

More decorations and annotations

You can annotate these plots by using standard matplotlib methods.

In [10]:
ax, pm = wradlib.vis.plot_ppi(img)
ylabel = ax.set_xlabel('easting [km]')
ylabel = ax.set_ylabel('northing [km]')
title = ax.set_title('PPI manipulations/colorbar')
# you can now also zoom - either programmatically or interactively
xlim = ax.set_xlim(-80, -20)
ylim = ax.set_ylim(-80, 0)
# as the function returns the axes- and 'mappable'-objects colorbar needs, adding a colorbar is easy
cb = pl.colorbar(pm, ax=ax)